## CHEMKAR PM<sub>10</sub>

## A year-long chemical characterization of $PM_{10}$ in Flanders (Belgium) in 4 major cities and 3 types of locations

J. Vercauteren<sup>1</sup>, D. Roet<sup>1</sup>, C. Matheeussen<sup>1</sup>, E. Roekens<sup>1</sup>, R. Vermeylen<sup>2</sup>, W. Maenhaut<sup>2</sup> and M. Claeys<sup>2</sup>

<sup>1</sup> Flemish Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerpen, Belgium <sup>2</sup>University of Antwerp (UA), Dept. of Pharmaceutical Sciences, Universiteitsplein 1, 2610 Antwerpen, Belgium

Keywords: PM<sub>10</sub>, chemical characterization, elemental carbon, streetcanyon

Presenting author email: d.roet@vmm.be

From July 2011 until July 2012 the Flemish Environment Agency (VMM) carried out its fourth "Chemkar  $PM_{10}$ " campaign as part of the European Life+ ATMOSYS project. This was a large scale chemical characterization project of PM<sub>10</sub> in Flanders (Belgium) in four major cities (Antwerp, Ghent, Bruges and Ostend; see also Figure 1). In each city measurements were done at 3 types of locations: a streetcanyon, an urban background and a regional road. The focus of the current project was to compare the results on both a city and location type level. Such comparison allows us to assess the contribution to PM<sub>10</sub> that can be attributed to local contributions like a streetcanyon. Besides the total PM<sub>10</sub> mass, ions, metals also elemental- and organic carbon (EC/OC) and levoglucosan (wood burning tracer) were analysed.

## Experimental setup:

During one full year  $PM_{10}$  was sampled simultaneously on every  $4^{th}$  day at each location type in each city totaling **about 1000 samples** (including field blanks).



Figure 1: Location of the project cities

Sampling was done for 24h with one Leckel SEQ 47/50 low volume sampler at 2.3 m $^3$ /h on 47mm Pallflex® Tissuquartz $^{TM}$  2500 QAT-UP filters. After sampling the PM $_{10}$  mass concentration was determined by dual weighing of the filters according to the European reference method EN14907. Next,

the filters were punched for chemical analysis and stored at -18°C until analysis. One punch  $(1.5 \text{ cm}^2)$  was used for the determination of **elemental and organic carbon** (thermal/optical transmittance) with the NIOSH protocol. Another punch  $(1.5 \text{ cm}^2)$  was used for determination of **levoglucosan** by means of GC/MS after derivatisation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS).

## Results:

On average, concentrations in the **street canyons** were 7.5  $\mu g/m^3$  higher than at the urban background sites. This local contribution was mainly due to the resuspension of mineral dust (+ 3  $\mu g/m^3$ ), organic matter (+2  $\mu g/m^3$ ) and elemental carbon (+ 1  $\mu g/m^3$ ). *Figure* 2 shows more detailed results for the streetcanyons in each city.

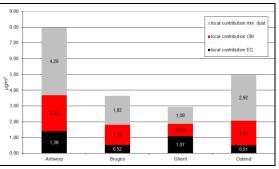



Figure 2: Local contributions to  $PM_{10}$  in streetcanyons in different cities.

More results and extended analysis will be presented at the conference.