Organic aerosols from residential wood burning emissions analysed by Ultra-high resolution mass spectrometry

A. G. Rincón1, C. Alves2, M. Dietzel3 and M. Kalberer1

1Department of Chemistry, University of Cambridge, Cambridge, Cambridgeshire, CB2 1EW, United Kingdom
2Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, Aveiro, 3810-193, Portugal
3Institute of Nano- and Microfluidics, Center of Smart Interfaces, Technical University Darmstadt, D-64287 Darmstadt, Germany

Keywords: organic aerosols, biomass burning, chemical analysis, mass spectrometry.

Presenting author email: agr36@cam.ac.uk

Biomass burning (BB) is considered as one of the largest primary sources of organic aerosols in the atmosphere. The chemical composition of BB aerosol is diverse and depends e.g., on the chemical composition of the burning material. Emissions from residential fireplace combustion of wood have been shown to be major contributors to air pollution during winter months. The fraction of BB particle mass is not easily identified with conventional analytical techniques due to the highly complex compound mixtures in organic aerosols.

Here we present results of ultra-high resolution mass spectrometry (UHR-MS), which has unique capabilities to characterize complex samples (Nizkorodov, 2011), (Rincón, 2012). UHR-MS allows identifying unambiguously the elemental composition of thousands of compounds in a single analysis and gaining information about the structure and formation mechanisms of organic compounds in aerosols.

The BB sample was collected from a typical open fire stove used in Portugal for residential heating. The burning test was made using a predominant tree species in Portugal Pinus pinaster (Maritime pine) and it was carried out at the combustion facility of the University of Aveiro. The complete description of the facility and other parameters continuously monitored during the experiment are published elsewhere (Goncalves, 2011). Particulate matter with aerodynamic diameters below 2.5µm was collected onto quartz fibre filters.

The water-soluble organic fraction of the filter extracts was separated from inorganic ions by a solid phase extraction step and re-dissolved in acetonitrile-water prior to analysis. UHR-MS analyses were performed using an LTQ Orbitrap Velos, with an accuracy below 2ppm, using an electrospray ionisation source. Mass spectra were measured by direct infusion, in negative and positive polarities and recorded within the range of 50-500m/z. Molecular formulas were assigned to the exact masses of more than 3000 compounds in a single sample using the XcaliburTM software and additional software written in-house.

Figure 1 shows a van Krevelen plot of H/C versus O/C of the compounds containing carbon, hydrogen and oxygen, detected in negative and positive polarities and recorded within the range of 50-500m/z. Molecular formulas were assigned to the exact masses of more than 3000 compounds in a single sample using the XcaliburTM software and additional software written in-house.

Figure 1. Van Krevelen diagram of C_{x}H_{y}O_{z} containing organics measured in negative (▲), positive (▲) MS mode and compounds measured in both polarities (○).