Assessing the contribution of indoor particulate matter sources in residential homes in a northern province of Italy

P. Fermo¹, A. Piazzalunga¹², J. Tarlassi¹, A. Cattaneo³, P. Urso⁴, M.G. Perrone²

¹Department of Chemistry, University of Milan, 20133, Milan, Italy
²Department of Environmental Science, University of Milano Bicocca, 20126 Milano, Italy
³Department of Clinical Sciences and Community Health, University of Milan, 22100 Milano, Italy
⁴Biomedical and Clinical Science Department "L.Sacco" University of Milano 20157 Milano, Italy

Keywords: particulate matter, indoor pollution, PAH, ions

Presenting author email: paola.fermo@unimi.it

Many hazardous chemicals produced by different anthropogenic sources and emitted in the environment may cause adverse effects on human health (Kampa et al., 2008). Particulate matter (PM) effects on human health are well known. Because people spend most of their time indoors, indoor PM exposure is a relevant health concern. Indoor residences greatly contribute to total daily exposures because people spend 80 to 90% of their time in confined environments (Schweizer et al. 2007). The health effects are strictly correlated to the chemical composition since PM contains classes of compounds, such as PAHs, recognized as carcinogen by IARC.

Aim of this study was to assess the chemical composition of PM$_{2.5}$ and PM$_{10}$ samples collected in residential homes in a Northern province of Italy (Lodi) in order to identify the main sources of indoor exposure and the contribution of outdoor particles. 24-h samples were collected in 29 homes by means of GK2.05 and GK2.69 samplers (Cattaneo et al. 2011) during both winter and summer. Characteristics of the buildings, including location (e.g. proximity to roads with high traffic) were recorded. Furthermore a time-activity diary containing each activity that could influence indoor PM levels (occupants number, heating system, ventilation, number of cigarettes smoked, time spent for cooking food, time spent on housework, etc.) was available.

The concentrations of 8 ions (Ca$^{2+}$, Mg$^{2+}$, K$^{+}$, NH$_4^+$, Na$^+$, SO$_4^{2-}$, NO$_3^-$ and Cl$^-$) and 15 PAHs considered as "priority" for the U.S. EPA (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene, benzo (a) pyrene, dibenz(a, h) anthracene, benzo (g, h, i) perylene and indeno (1,2,3, cd) pyrene) were quantified.

The concentrations of PAHs as sum of the 15 examined species were found, with few exceptions, to be below 5 ng m$^{-3}$ and 2 ng m$^{-3}$ in winter and summer respectively. In order to identify possible PAHs sources, three different methodologies were applied:

2. linear mixed models for repeated measurements (summer and winter) aimed at identifying main determinants (Urso et al., in press)
3. Chemical Mass Balance (Belis et al., 2011)

The characteristic of buildings and the activities was used to select the variables to be included in the tested models.

Preliminary results have shown that meat cooking represents an important source of indoor PAHs, in addition to gasoline and diesel combustion due to outdoor sources.

Cattaneo et al. (2011) Indoor Air, 21, 489–500
Urso et al. (2013), Atmos. Environ., in press