## Selective catalytic reduction nitrogen oxides with methane over nanosized CuO supported on Al<sub>2</sub>O<sub>3</sub>. Part 2. Catalytic activity and mechanism study

Chang-Mao Hung<sup>1</sup>, Mu-Hsing Kuo<sup>2</sup>, Shui-Jen Chen<sup>3</sup>, Wei-Bang Lin<sup>4</sup> and Wen-Liang Lai<sup>5</sup>

<sup>1</sup>Department of Vehicle Engineering, Yung-Ta Institute of Technology and Commerce, 316 Chung-Shan Road, Linlo, Pingtung 909, Taiwan, Republic of China.

<sup>2</sup>School of Health Information Science, University of Victoria, B.C., Canada.

<sup>3</sup>Department of Environmental Science and Engineering, National Pingtung University of Science and

Technology, 1 Shuefu Road, Neipu, Pingtung 912, Taiwan, Republic of China.

<sup>4</sup>Department of Mechanical Engineering, Chinese Military Academy, Fenshan, Kaohsiung 830, Taiwan, Republic of China.

<sup>5</sup>Department of Environmental Science and Occupational Safety and Hygiene, Tajen University, 20 Wei-Shin Road, Yanpu Shiang, Pingtung 907, Taiwan, Republic of China.

Keywords: selective catalytic reduction, nitrogen oxides, nanosized Cu/y-Al<sub>2</sub>O<sub>3</sub> catalyst.

Presenting author email: hungcm1031@gmail.com

NO<sub>x</sub> is a toxic inorganic gas with a pungent odor under ambient conditions, and is potentially harmful to public health. Moreover, it is known, various technologies have been explored for the reducing NO<sub>x</sub> emissions can be classified as wet or dry processes. The use of wet-scrubbing agents to adsorb NO<sub>x</sub> enables alkali in water or hydrogen peroxide to be used as the liquid for capturing NO<sub>x</sub>. Besides, complete biological treatment systems have been extensively investigated and implemented. Recently, selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR) have been established to increase the effectiveness of advanced reduction processes technology using dedicated catalysts, which potentially shorten the reaction times of reduction, and allow it to proceed under milder operating conditions. Supported copper oxides were found to have the high activity among the tested transition metal oxides for the reduction of NO. Hence, the catalytic process of NO<sub>x</sub> in a stream to N<sub>2</sub> and H<sub>2</sub>O is one method for solving problems of NO<sub>x</sub> pollution. This work considers the reduction of NO from by SCR over nanosized Cu/y-Al2O3 catalyst at temperatures between 623 and 1023 K. A nanosized Cu/y-Al<sub>2</sub>O<sub>3</sub> catalyst was prepared by incipient wetness impregnation approach of copper nitrate and  $\gamma$ -alumina support, which were different in the loading of copper. The catalysts were characterized using UV-Vis. Figure 1 presents the effect of copper loading on the conversion of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> at various temperatures. The figure indicates that the maximum activity increases with copper loading in the range of 2 to 8%, and the reaction conditions strongly affect the relationship between the activity of the catalyst and copper content. The lower loadings may offer few active sites and thus showed lower activities. Thus, in this study 8% nanosized Cu/y-Al<sub>2</sub>O<sub>3</sub> catalyst was selected as optimal in the following. Figure 2 shows the bands in the ranges of 300-350 nm and 700-900 nm and were attributed to the  $Cu^{2+} - O_2^{-1}$ electronic transition species and the d-d transitions of Cu<sup>2+</sup> in an octahedral environment with Oh symmetry, respectively.



Figure 1. Effect of various copper loading on the nanosized  $Cu/\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst for the conversion of NO with CH<sub>4</sub>. Test conditions : 600 ppm NO in He, 600 ppm CH<sub>4</sub> in He, O<sub>2</sub> = 2%, GHSV = 108000 ml/h-g.



Figure 2. UV-Vis pattern of the various copper loading on the nanosized  $Cu/\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst.