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The capture of nanoparticles with the optical tweezers 
makes it possible to perform a variety of measurements of 
physical and chemical properties, but the high irradiances 
usually encountered can lead to excessive heating of the 
particles.  In a previous paper we (Roder et al., 2012) 
analyzed the heating of nanowires illuminated at right 
angles to the wire axis using Mie theory to determine the 
heat source function.  Here we extend the analysis to finite 
length nanorods illuminated end-on in a laser trap.  The 
theoretical predictions of the rod temperature are 
compared with optical tweezer studies which involve 
measurement of the Brownian motion of trapped particles 
using the methods of Peterman et al. (2001) and Marago 
et al. (2008) to determine the particle temperature. 

The temperature distribution in a circular 
nanorod satisfies the energy equation given by 

                        ,                         (1) 

in which α is the thermal diffusivity of the rod, and 
S(r,θ,z) is the volumetric rate of heat generation, which 
must be determined from the internal electric field, that is, 

                      ,                         (2) 

where ρ is the particle density, C is its specific heat per 
unit mass, σ is its electrical conductivity, which is a 
function of the complex refractive index of the particle. 
The electric vector E and its complex conjugate E* 
depend on the optical characteristics of the irradiation.  It 
is assumed that the heat source is not a function of time, 
and for the special case of infinitely long cylinders it is 
not a function of the axial position, z. 

Equation (1) has been solved for boundary 
conditions and initial conditions appropriate for a rod (or 
wire) trapped in a stagnant fluid for three cases of possible 
applications: (i) illumination at right angles to the cylinder 
axis, the case examined by Roder et al. (2012), (ii) 
illumination of the lower end of a highly absorbing rod by 
a plane wave, and (iii) the more general case of a rod 
illuminated by a plane wave propagating in the z-
direction. 

Examples of the dimensionless source function 
and temperature distribution for case (i) are shown in 
Figures 1a and 1b, respectively, for a strongly absorbing 
carbonaceous rod.  In this case Mie theory was used to 
compute the internal electric field, and the dimensionless 
source function is seen to have a complex structure of 
peaks and valleys. The dimensionless temperature 
distribution, (T-T∞)/ T∞, is seen to be highly non-uniform.  

Computations for nanoparticles show that even 
though the heat source function can be very non-uniform, 
 

the temperature can be uniform due to internal conduction, 
eliminating the possibility of photophoresis.  For a 
carbonaceous rod with the temperature distribution shown 
in Figure 1b photophoresis can be expected. 
 

                     

                     
 

Figure 1. The dimensionless source function (a) and 
dimensionless temperature distribution (b) for a carbon 

rod with a radius of 100 nm in air irradiated at 1,000 
W/cm2 at a wavelength of 488 nm . 

 
For case (ii), which applies to strong absorbers 

such a carbonaceous particles, we have applied the Fresnel 
equations to obtain an approximation for the internal field, 
and used that in the general solution of the energy 
equation to determine the temperature distribution.  Very 
high temperatures are predicted for the high irradiances 
usually used for laser traps. For case (iii), which is a much 
more difficult problem, we have used numerical methods 
to determine the internal electric field, and then inserted 
the results in the general solution of Eq. (1).   
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