$\mathrm{H}_{2} \mathrm{SO}_{4}$ formation from olefin ozonolysis in the presence of SO_{2} :

Influence of water vapour content and temperature

T. Berndt ${ }^{1}$, T. Jokinen ${ }^{1,2}$, M. Sipilä ${ }^{2}$, R. L. Mauldin $\mathrm{III}^{2,3}$, H. Herrmann ${ }^{1}$, F. Stratmann ${ }^{1}$, H. Junninen ${ }^{2}$, M. Kulmala ${ }^{2}$
${ }^{1}$ Leibniz Institute for Tropospheric Research, Leipzig, 04318, Germany
${ }^{2}$ Depatment of Physics, University of Helsinki, Helsinki, 00014, Finland ${ }^{3}$ University of Colorado, Boulder, Colorado, 80302, United States
Keywords: $\mathrm{H}_{2} \mathrm{SO}_{4}$, stabilized Criegee Intermediate, mass spectrometry Presenting author email: berndt@tropos.de

For more than a decade the formation of new aerosol particles in the atmosphere has been the subject of intense studies in both, field and laboratory. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was ascertained to play a central role in this process. A dominante pathway of $\mathrm{H}_{2} \mathrm{SO}_{4}$ generation represents the OH radical initiated oxidation of SO_{2}. Recently it was discovered that also other oxidants than OH radicals, very likely stabilized Criegee Intermediates (sCI), can significantly contribute to $\mathrm{H}_{2} \mathrm{SO}_{4}$ formation under atmospheric conditions (Mauldin et. al., 2012). Criegee Intermediates originate from the reaction of ozone with unsaturated substances (olefins) and occur with different structures associated with a different chemical behaviour. Unfortunately, the formation yields of sCI as well as their chemical reactivity toward atmospheric trace gases (SO_{2}, acids, etc.) and water vapour are not well characterized and are, at least partly, subject of speculation. Welz et. al. (2012) reported on unexpectedly high rate coefficients of the reaction of $\mathrm{CH}_{2} \mathrm{OO}$ with SO_{2} and other trace gases. As a result from our laboratory, clearly lower rate coefficients for the reaction of a series of sCI with SO_{2} have been measured (Berndt et. al., 2012). Generally, there is a debate at the moment regarding the relevance of the $\mathrm{sCI}+\mathrm{SO}_{2}$ reaction in competition with the probably, much more important $\mathrm{sCI}+\mathrm{H}_{2} \mathrm{O}$ pathway.

This experimental study focuses on $\mathrm{H}_{2} \mathrm{SO}_{4}$ formation from the ozonolysis of tetramethylethylene (TME) and trans-2-butene in the presence and absence of an OH radical scavenger at atmospheric pressure conducted in the temperature range of $278-343 \mathrm{~K}$ and a relative humidity of 8 60%. The experiments have been performed in a flow tube (IfT-LFT) for close to atmospheric reactant concentrations, [olefin] $=(1-4) \cdot 10^{10}$ molecule cm^{-3}, $\left[\mathrm{O}_{3}\right]=2 \cdot 10^{11}$ molecule $\mathrm{cm}^{-3} . \mathrm{H}_{2} \mathrm{SO}_{4}$ was detected by means of a high resolution mass spectrometer with a chemical ionization inlet, CI-APi-TOF, utilizing $\mathrm{NO}_{3}{ }^{-}$ ions for chemical ionization (Jokinen et. al., 2012). In the case of the ozonolysis of TME, additional $\mathrm{H}_{2} \mathrm{SO}_{4}$
formation in the presence of the OH radical scavenger showed no clear RH dependence. In the trans-2-butene system, however, distinct RH-dependent $\mathrm{H}_{2} \mathrm{SO}_{4}$ production was detected, see for instance figure 1. The observed effects point to the occurrence of two oxidants for SO_{2} (beside OH radicals) with different chemical behaviour, probably the syn- and anticonformers of acetaldehyde oxide.

Figure 1: Ratio of measured $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $\mathrm{RH}=10$ and 50% as a function of SO_{2} concentration, presence of an OH radical scavenger, 293 K.

Berndt, T., Jokinen, T., Mauldin III, R. L., Petäjä, T., Herrmann, H., Junninen, H., Paasonen, P., Worsnop, D. R., Sipilä, M., (2012), J. Phys. Chem. Lett., 3, 28922896.

Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Petäjä, T., Mauldin III, R. L., Kulmala, M., and Worsnop, D. R., (2012), Atmos. Chem. Phys., 12, 4117-4125, doi: 10.5194/acp-12-4117-2012.
Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kúrten, T., Stratmann, F., Kerminen, V.-M., Kulmala, M., (2012), Nature, 488, 193-196, doi: 10.1038/nature11278.
Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., Taatjes, C. A., (2012), Science, 335, 204-207.

